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     Summary 

 As means of exploring or modulating the nervous system, 
neurotechnologies are increasingly used to treat or remedy 
disabilities. The private sector's growing interest in these 
technologies, particularly for creating brain-machine interfaces, 
raises the question of their non-medical applications. 

 The research sector, in which France is and must remain highly 
ranked, still has many challenges to meet, most often in relation 
to improving the precision of the devices used. These advances 
are themselves linked to advances in knowledge of the brain. 

 Increasingly complex ethical issues call for the regulation of these 
technologies, as shown by numerous initiatives at the 
international level. In the long term, vigilance must be exercised 
in response to the transhumanist project to create "augmented 
humans", as neurotechnologies must be used first and foremost 
for healing and repair. 

 

Patrick Hetzel, Member of the National Assembly, Vice-President 
 
 

 Neuroscience-related technologies 

We have recently witnessed a resurgence of interest in 
neurotechnologies as tools for measuring or modulating 
the nervous system, especially brain activity, spurred on by 
initiatives launched by both public authorities and private 
companies,(1) but also by improvements brought about by 
digital technologies and the design of increasingly powerful 
interfaces. These techniques, whose forerunners include 
controversial methods,(2) and even abandoned practices in 
the case of lobotomies, remain dependent on our currently 
incomplete knowledge of the functioning of the brain 
and its 100 billion neurons, and more generally, of the 
functioning of the central and peripheral nervous systems.(3) 
Indeed, advances in neuroscience, which are dependent upon 
neurotechnologies, and which reciprocally help to improve 
these techniques, are hindered by the complexity of the 
brain, which remains the most poorly understood human 
organ by science. 

 Technologies used for investigating brain activity 

Various imaging techniques can be used to investigate brain 
activity. Compared to other techniques, 
electroencephalography (EEG) is non-invasive and relatively 
inexpensive, and is therefore widely used. It measures 
electrical activity in the brain via electrodes placed on the 

skull, and has been used since the 1950s to diagnose and 
monitor a wide range of diseases (despite a spatial resolution 
of more than 1 cm2). It is also used for studying sleep and, 
where necessary, its disorders. Electrocorticography (ECoG) 
and intracranial or stereotactic EEG (SEEG) are more efficient, 
but invasive (requiring surgery), variants of EEG. 
Magnetoencephalography (MEG) measures the weak 
magnetic fields generated by the electrical activity of a group 
of neurons (resolution of 2 to 3 mm²), and has extensive 
clinical applications, e.g. for locating epileptic foci prior to 
surgery. EEGs and MEGs enable the recording of evoked 
potentials (EPs), which measure changes in the electrical 
potential of neurons after sensory stimulation and provide 
information about the functioning of the stimulated pathway 
(e.g. auditory, optic or motor nerves). 

All of these techniques, which are based on electrical activity, 
usually produce less accurate results than other methods 
based on metabolic activity: functional magnetic resonance 
imaging (fMRI), for example, can show haemodynamic 
variations (local changes in blood flow) and changes in blood 
oxygenation linked to neuronal activity. Its average spatial 
resolution can be as detailed as 500 µm2, although its 
temporal resolution is limited. Similarly, positron emission 
tomography (PET) and single-photon-emission 
scintigraphy (SPECT) use a camera to detect positrons or 
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gamma rays, respectively, which are emitted by a radio-
labelled tracer with known behavioural and biological 
properties, in order to monitor the concentration of 
radioactivity and the tissue kinetics of the radiotracer for the 
analysis of cell metabolism. Other techniques should also be 
mentioned, such as transcranial ultrasound imaging (which 
can facilitate stroke diagnosis and monitoring), and 
functional near-infrared spectroscopy or fNIRS (which 
measures brain oxygenation in order to infer its activity). 

 Neurotechnologies for healing 

Neurotechnologies are widely used for therapeutic 
purposes, often in combination with the above-mentioned 
imaging techniques (especially EEG, MEG and fMRI). 
Neuromodulation, or neurostimulation, uses electric 
currents, light, ultrasound or magnetic fields to intervene on 
neuronal circuits. Non-invasive methods, such as transcranial 
magnetic stimulation (TMS) and electrical stimulation 
(transcranial direct-current stimulation – tDCS), whose effects 
vary according to the frequency of the current and the 
polarity (inhibiting on the cathode side, exciting on the anode 
side), are less accurate than invasive implanted stimulation 
because the administered or induced current is not precisely 
targeted. Although studied by medical research projects for 
the treatment of depression, pain, schizophrenia and 
neurological diseases, a consensus on their effectiveness has 
not yet been reached. Conversely, deep brain stimulation 
(DBS) produces undeniable results for the treatment of 
certain pathologies.(4) 
 

 

Other invasive but less profound neuromodulations have 
also produced positive effects on treated patients, either by 
reducing chronic pain, eliminating the feeling of hunger in 
obese people, or preventing epileptic seizures (a helical 

electrode implanted around the vagus nerve stimulates it at 
regular intervals). Used in a medical context, virtual reality 
also yields promising results for mental disorders, especially 
in combination with other therapies.(5) 

 Neurofeedback and brain-machine interfaces (BMI) 

The imaging techniques discussed above can be used as part 
of a "neurofeedback” process consisting of feedback loops 
between the nervous system and computers, which use 
information about a given function to control and modify 
that function, usually via EEGs. Brain-computer interfaces(6) 
(BCI), which are closely related to neurofeedback but often 
considered as a separate technique, have made a significant 
contribution to the neurotechnology field, with 
neuroprostheses being a spectacular example of this 
technology. BCIs are divided into unidirectional and 
bidirectional, invasive and non-invasive devices. After 
pioneering research on monkeys and then on humans in the 
1970s and 1980s, and despite a mixed clinical assessments,(7) 
convincing results have been recorded more recently in the 
fields of communication (cursor movements, virtual 
keyboards, video games, etc.), military applications(8) and, 
above all, compensation for disabilities. 

 Compensating for certain disabilities 

Neurotechnologies can provide solutions to aid recovery 
from sensory (hearing, visual) and motor (paralysis, loss of a 
limb, etc.) disabilities. Sensory neuroprostheses, which 
consist of information sensors and a processor to transform 
this information into electrical stimuli, are used to transmit 
sensory information to the brain via electrodes when an 
organ or the normal transmission chain fails. When the optic 
nerve is intact but the photoreceptor cells have degenerated 
(as occurs in pigmentary degeneration of the retina and age-
related macular degeneration), artificial retinas can restore 
basic vision after the implantation of a chip in the retina 
which creates electrical currents to stimulate the cells leading 
to the optic nerve when the chip is exposed to light, or when 
an external camera sends visual information to the chip.(9) 
When deafness is accompanied by an intact auditory nerve, a 
cochlear implant can restore hearing as a second-line 
treatment, via a microphone that detects sounds and 
converts them into electrical signals, which are then applied 
to different parts of the helical structure of the inner ear in 
order to stimulate the auditory nerve.(10) 

Several technologies can also compensate for motor 
disabilities, but they currently remain at the laboratory 
research stage (except for post-stroke rehabilitation). 
Paraplegia and tetraplegia – paralyses caused by an injury 
to the spinal cord that prevents nerve signals from flowing 
between the brain and the parts of the body situated beneath 
the injury – can be overcome by restoring the patients' 
control over their limbs by implanting a controller: functional 
electrical stimulation requires the application of low-level 
electrical stimuli to the nerves controlling the muscles, or 

Deep brain stimulation (DBS) 

DBS is currently used empirically with success for the second-line 
treatment of Parkinson's disease, following research by Professor 
Alim-Louis Benabid (80% reduction in tremors, despite undesirable 
effects in a minority of patients such as apathy,  speech problems 
and weight gain). It requires the extremely accurate implantation of 
two electrodes in the brain at the level of the subthalamic nuclei. 
These electrodes are connected to two electrical batteries 
implanted at the subclavicular or abdominal level, which deliver a 
direct current of 2 to 3 volts at 130 pulses per second, i.e. at a 
frequency of 100 to 200 Hz. Corrosion and tissue formation around 
the electrodes gradually reduce the signal over time. The batteries 
have a service life of around five years, depending on the intensity 
of the stimulation. Surgery is required whenever the equipment is 
changed, and batteries are currently being developed with a 
service life of 25 years. Other applications could include the 
treatment of Alzheimer's disease and mental disorders which are 
resistant to other treatments, such as severe forms of depression 
and obsessive-compulsive disorders. 
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directly to the muscles themselves, in order to assist or 
replace voluntary contractions. Highly complex electrical 
signals are transmitted to the muscles via electrodes placed 
on each muscle. However, the implantation process requires a 
very long surgical operation, the actions are slow, the muscles 
tire quickly, and the patient needs assistance from another 
person or a walker. BMIs are also used for patients with 
advanced amyotrophic lateral sclerosis. Motor 
neuroprostheses analyse voluntary motor information in the 
brain, interpret it, and transmit information about the 
mechanical actions to be performed to an exoskeleton,(11) or 
to a limb (real or artificial).(12) Finally, bi-directional 
neuroprostheses are composed of a motor prosthesis, 
sensors and proprioceptors. The latter provide feedback to 
the brain or to the controller about the action performed by 
the prosthesis, in order to help patients adapt their control 
over the movement, recover their sense of touch, and feel 
signals similar to pain.(13) 

 Growing private-sector interest and the question 
of non-medical applications 

Tempted by the potential opportunities arising from the 
hybridisation of the brain with artificial intelligence (AI), more 
and more companies are investing in the field of 
neurotechnology,(14) following the example of Neuralink, 
founded by Elon Musk in 2017, whose targets include 
enabling paralysed people to walk again and treating 
neurological diseases, but also improving natural cognitive 
abilities. The latest version of its 23-mm diameter, 8-mm thick 
implant, recharged daily by induction and composed of 1,024 
electrodes (extremely fine wires close to the size of a neuron), 
was tested in on pigs in 2020 (after initial experiments on rats 
and a monkey), and authorisation is currently awaited to 
begin clinical trials on humans.(15) 

The corporate sector’s growing interest in neurofeedback and 
BMIs is accompanied by massive investments in research, 
with a view to mainly non-medical applications despite a 
restrictive legal framework.(16) Examples include the 
marketing of consumer products with often unproven 
effectiveness, for controlling digital interfaces by thought 
(computerised transmission and receipt of information, 
entertainment and video games, etc.), as an aid to 
concentration, relaxation or sleep and well-being in general, 
or to improve cognitive and sporting performance. There is 
great potential for the development of EEG neurofeedback as 
an "individual" device, although the results are highly variable 
and tend to be overestimated, and not only as a result of 
promotional "hype".(17) 

It can also be used to detect losses of attention when 
driving a car, in the classroom or at work. Several of the 
experts interviewed claimed that experiments on using BMIs 
to monitor the brain waves of students and workers are being 
conducted in China, in order to combat emotional states that 
are detrimental to concentration. 

 Meeting the challenges of research 

This field benefits from major public and private research 
projects and is constantly progressing, with efforts focusing 
on extending the application of already known 
neurotechnologies to other pathologies (such as the use of 
deep brain stimulation to treat OCD, Tourette's syndrome, 
depression, etc.), and on increasing their precision. 

In brain exploration, future progress will require the 
standardisation of measurements (each manufacturer has its 
own references), and the simultaneous use of fMRI and EEG 
or MEG. Advances in fMRI call for the deployment of high-
resolution, latency-free, "high-field" imaging,(18) and small 
low-field devices to facilitate the dissemination of the 
technology. Progress in EEG will require higher resolutions 
(less than one cm²), the simplification of sensor installation 
(often long and uncomfortable), and the ability to use dry 
electrodes. The objective for MEG is to enable the technology 
to function at room temperature(19) (versus near absolute 
zero at present). 

As far as brain stimulation is concerned, the electrodes used, 
whose diameter is currently no smaller than 5 microns, will 
become progressively thinner in order to approach the 
neuron scale. In addition, the materials used will be more 
flexible and biocompatible,(20) in order to prevent them 
from being identified as foreign bodies and to limit signal 
loss. Finally, the circumferential electrodes that measure the 
potential in their entire vicinity will be replaced by 
directional electrodes, to reduce spurious signals. This 
increased accuracy will enable more precise coverage and 
the use of a greater number of electrodes, in order to 
reproduce local and overall variations in nerve impulses. The 
US-based Brain Initiative is developing mixed and scalable 
electrodes to record and stimulate neuronal activity 
electrically, magnetically and optically at different scales. 
These mixed electrodes hold great promise. 
Optogenetics(21) is another potentially exciting, but 
uncertain, field awaiting further exploration. Finally, the use of 
improved radiotracers will enable the development of more 
precisely targeted therapies.(22) 

However, we must remain aware of the limitations of 
neurotechnologies (inconsistent performance, and side 
effects, as the implantation of electrodes in the brain may 
cause infections, haemorrhages and brain dysfunction). 
Electrical or magnetic stimulation may cause epileptic 
seizures, alter the brain's plasticity, and interfere with the 
patient's thoughts and emotions, or even his or her ability to 
exercise free will: consequences which raise major ethical 
issues. 

 Ethical issues 

The use of neurotechnologies affects the brain – either as 
the intended purpose or as a side effect – and the patient's or 
user's personality may be altered, leading to depression or 
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euphoria, for example. Insufficient long-term data is available 
to objectively assess whether the benefits of certain 
neurotechnologies far outweigh their side effects. In addition 
to these intrinsic risks, the use of neurotechnologies is also 
open to potential abuses. Low-cost devices for individuals 
are becoming more widely available and may be of poor 
quality, ineffective, or even dangerous (cases of cognitive 
damage or scalp burns). 

More generally, neurotechnologies raise ethical questions 
about patients' rights to their data, which need to be 
protected as they could be used for discriminatory or 
malicious purposes. Therefore, concerted international efforts 
have been made recently to meet the ethical challenges 
posed by these technologies, as the 1997 Oviedo Convention 
on Human Rights and Biomedicine – the first legally binding 
international instrument for protecting rights against any 
misuse of biological and medical advances – is now 
insufficient. In December 2019, the OECD (23) formulated nine 
principles intended to regulate innovation in 
neurotechnology. This recommendation – the first 
international standard in this field – will be implemented at 
the national level. The French Ministry of Higher Education, 
Research and Innovation (MESRI) is collaborating with other 
actors on the adoption of a charter for the responsible and 
ethical development of neurotechnologies in France.(24) 

Some initiatives go further than the usual rights of patients 
(including dignity, the integrity of the human body, the 
principle of informed consent, and the right to information), 
the protection of personal data, the reliability, safety and 
security of devices, and the prevention of abusive or even 
malicious uses: they concern the protection of the 
personality and the protection of the right to exercise free 
will. 

For example, the report by the UNESCO International 
Bioethics Committee (IBC) on the "Ethical Issues of 
Neurotechnology",(25) published in 2022, calls for the creation 
of a new set of human rights, called neurorights, including 
the right to mental privacy and to exercise free will, which go 
beyond the traditional scope of the protection of human 
rights.(26) This report calls on each state to guarantee the 
neurological rights of its citizens by adopting laws that 
protect privacy, brain activity and freedom of thought in 
relation to neurotechnologies, and stresses the need to pay 
special attention to children and adolescents, due to the 
plasticity of their developing brains.(27) UNESCO has also 
announced that it is leading discussions on developing a 
roadmap that will serve as the basis for a global framework 
for the governance of neurotechnologies. 

In October 2021, Chile anticipated these developments by 
passing a law protecting citizens' "brain rights", which covers 

the protection of neurorights,(28) including the rights to 
personal identity, free will and mental privacy. 

 The Office's recommendations 

Following on from its previous work,(29) the Office proposes 
to reinforce the coordination and unification of French 
neuroscience and neurotechnology research, which is carried 
out by an excessively fragmented body of small, poorly 
funded teams (the number of permanent neuroscience 
researchers at the French National Centre for Scientific 
Research (CNRS) has declined by 20% in ten years). 

The development of the research ecosystem should be 
encouraged by establishing a consortium (of the “Braingate” 
type in the United States), or even a national 
neurotechnology research network encompassing all the 
players: research institutes, hospitals, military researchers and 
industry.(30) 

This is all the more important as France boasts many assets 
and is often at the forefront of international 
neurotechnology research, particularly for clinical research 
(deep-brain stimulation, cochlear implants, artificial retinas, 
neuroprostheses, optogenetics, etc.). 

In partnership with the Institut du Cerveau and the Institut de 
la Vision, based in Paris, a centre of excellence in 
neurotechnology could emerge at Paris-Saclay, which is 
already a top-ranked institution for neuroscience (with 
NeuroSpin, NeuroPSI, etc.) and hosts excellent engineering 
schools. 

The following recommendations are made with specific 
regard to the ethics of neurotechnology: 

- continue the work on transposing the OECD 
recommendation on the regulation of innovation in 
neurotechnology into national law; 

- define a protective legislative framework, similar to that 
adopted in Chile, with an emphasis on the safety of devices, 
respect for the right to maintain bodily integrity and the right 
to privacy, and the protection of personal data, including 
data from the recording of brain activity, while setting aside 
the excessively vague notion of free will; 

- and ensure that this framework does not discourage 
research or reduce our competitiveness. 

Even if the transhumanist project remains largely the stuff 
of science fiction at this stage, a certain vigilance is still 
required to counter the temptation to create augmented 
humans: first and foremost, neurotechnologies must be used 
for healing and repair. 
 
 
 
The Office's websites: 
 
http://www.assemblee-nationale.fr/commissions/opecst-index.asp 
http://www.senat.fr/opecst 
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        Deep brain stimulation (DBS) device 

 
Source: Mayo Clinic 
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transmitted in digital form are very different from those obtained naturally by a normal ear, and require a period of 
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Cochlear implants 

 
Source: Isabelle Mosnier and Yann Nguyen, APHP and Sorbonne University 

 
 

11.        The Clinatec exoskeleton 

 
Source: Clinatec, CEA, LETI, Grenoble University Hospital 

 
12 The motor information originates either from muscles which are still linked to the brain, via an electromyogram, or from the 
nervous system through electrodes. For complex applications such as hand prostheses or exoskeletons, internal brain 
electrodes implanted in the motor cortex are preferred.  
13 Patients suffering from hemiplegia often struggle to walk normally. They cannot lift the balls of their feet before they touch 
the ground, as this requires a nerve impulse that cannot be transmitted. This impulse can be recreated by an electrode, and it 
is activated via a link established between sensors and the controller. For amputees, mechanoreceptors integrated into their 
prostheses enable them to regain feeling in their limbs, in order to protect the patient's body and the prosthesis by reactions to 
pain, or to improve control over their prostheses by feeling the pressure applied to an object. 
14 Back in 2017, the Office raised the alarm about the predominance of private research and the key ethical issues related to 
artificial intelligence technologies in its Report No. 464 (2016-2017) by Mr Claude de Ganay, MP, and Ms Dominique Gillot, 
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16 In France, for example, the Law of 2 August 2021 on bioethics added Article L. 1151-4 to the Public Health Code, which 
provides for the prohibition by decree of "acts, procedures, techniques, methods and equipment having the effect of modifying 
brain activity and posing a serious risk or suspected serious risk to human health". Article 16-14 of the French Civil Code, as 
revised by the Law of 2 August 2021 on bioethics, stipulates that "brain imaging techniques may only be used for medical or 
scientific research purposes, or in the context of judicial expertise, excluding, in this context, functional brain imaging", which is 
consistent with the Office's position on limiting the use of brain imaging in court (Laura Pignatel's PhD thesis on this issue 
and, more generally, on the emergence of "neurolaw", defended in 2019, is worthy of note). See Report No. 476 (2011-2012) of 
the Office, by Mr Alain Claeys and Mr Jean-Sébastien Vialatte, Members of the French Parliament, entitled "L’impact et les 
enjeux des nouvelles technologies d'exploration et de thérapie du cerveau" (The impacts and challenges of new technologies 
for brain exploration and therapy), published on the Senate website https://www.senat.fr/notice-rapport/2011/r11-476-1-
notice.html and on the National Assembly website, https://www.assemblee-nationale.fr/13/rap-off/i4469.asp in addition to the 
Office's Science and Technology Briefing No. 20, on "Neurosciences et responsabilité de l’enfant" (Neurosciences and children's 
liability by Mr Michel Amiel, Senator (November 2019), also available on the Senate website 
https://www.senat.fr/fileadmin/Fichiers/Images/opecst/quatre_pages/OPECST_2019_0090_note_neursociences.pdf and on the 
National Assembly website https://www2.assemblee-
nationale.fr/content/download/181379/1817000/version/3/file/OPECST_2019_0090_note_neurosociences.pdf 
17 As shown in the meta-analysis by François Gonon, Estelle Dumas-Mallet and Sébastien Ponnou, on "Media coverage of 
scientific observations concerning mental disorders", the choice of subjects covered by the media significantly accentuates the 
distortions already found in the scientific literature, i.e. publication biases favouring initial observations and those reporting a 
positive effect. As a result, the media rarely inform the public about the uncertainties surrounding initial studies, and neglect to 
mention studies reporting an absence of effects. In particular, biomedical observations reported by the media are often 
contradicted by subsequent research, about which the public is not informed. See https://cahiersdujournalisme.org/V2N3/CaJ-
2.3-R045.html 
18 The high-field fMRI system at the French Alternative Energies and Atomic Energy Commission (CEA) Neurospin centre in 
Saclay – the world's most powerful model with a magnetic field of 11.7 teslas – produced its first images on 7 October 2021. 
19 This is the objective of Mag4Health, a start-up launched by CEA-Leti engineers in September 2021. See https://www.leti-
cea.fr/cea-tech/leti/Pages/actualites/News/Magnetoencephalographie--vers-la-haute-resolution-a-temperature-
ambiante.aspx  
20 Polymer-metal-polymer composites and silicones could ensure the biocompatibility, flexibility and durability of the 
electrodes, despite their extreme fragility. 
21 Originating from the observation of a light-sensitive protein discovered in an alga (channelrhodopsin) in 2002, optogenetics 
involves the genetic manipulation of nerve cells in order to enable their electrical activity to be controlled by light. Targeted 
neuronal cells are modified via viral vectors and then optically stimulated in order to excite or inhibit a defined number of 
neurons. Clinical applications in humans will depend on the quantification of the side effects caused by the genetic 
engineering and the implantation of optical devices that channel light into the brain through the skull. Indeed, the spatial and 
temporal accuracy of this technique is highly dependent upon these optical illumination devices, which are currently under 
development. One short-term application prospect concerns the recovery of vision by optogenetic stimulation of the retina: the 
first successful clinical application of optogenetics took place at the Institut de la vision in Paris, as described in an article 
published in the journal Nature on 24 May 2021, see José-Alain Sahel et al., "Partial recovery of visual function in a blind 
patient after optogenetic therapy" https://www.nature.com/articles/s41591-021-01351-4 
22 Examples include the visualisation of neuroinflammation in Parkinson's patients with radiotracers that facilitate the 
evaluation of specific anti-inflammatory drugs. 
23 The following principles of Recommendation 457 were laid down by its Council of Ministers: promote responsible innovation; 
prioritise safety assessment; promote inclusivity; foster scientific collaboration; enable societal deliberation; enable the 
capacities of oversight and advisory bodies; safeguard personal brain data and other information; promote cultures of 



 

                                                                                                                                                               
stewardship and trust across the public and private sectors; anticipate and monitor possible unintended use and/or abuse. See 
https://legalinstruments.oecd.org/fr/instruments/OECD-LEGAL-0457 Back in 2017, Marcello Ienca and Roberto Andorno had 
called for such an approach in their article entitled "Towards new human rights in the age of neuroscience and 
neurotechnology" cf. https://lsspjournal.biomedcentral.com/articles/10.1186/s40504-017-0050-1  
24 The Ministry coordinates a national task force on the implementation of OECD Recommendation 457. The charter being 
developed could address the recognition of patients' and users' rights, the protection of brain data, the reliability, safety and 
security of devices, the ethics and rules of professional conduct for communication, the prevention of abuses, and the 
deterrence of malicious applications. This task force has been discussed in several articles published in an issue of the Annales 
des Mines journal Réalités industrielles, No. 3, August 2021, entitled "Neurotechnologies et innovation responsable" 
(Neurotechnologies and Responsible Innovation): See https://www.cairn.info/revue-realites-industrielles-2021-3.htm  
25 See https://en.unesco.org/news/unescos-international-bioethics-committee-recommendations A draft but more complete 
version of the report is available via the following link https://unesdoc.unesco.org/ark:/48223/pf0000378724  
26 In the United States, the NeuroRights Foundation, chaired by the professor of neurobiology at Columbia University Rafael 
Yuste, is also campaigning along similar lines. 
27 The Office's Science and Technology Briefing on "Neurosciences et responsabilité de l’enfant" (Neurosciences and children's 
liability) clearly underlined the slow pace of brain maturation, with cognitive capacities approaching those of adults acquired 
at around 16 years of age, and psychosocial maturity only attained at around 22-23 years. 
28 See this legal analysis by the lawyer Thierry Vallat https://www.thierryvallatavocat.com/2021/10/la-premiere-loi-sur-la-
protection-des-donnees-neuronales-a-ete-adoptee-le-30-septembre-2021-au-chili.html  
29 See the Office's report No. 476 (2011-2012) by French Members of Parliament Messrs Alain Claeys and Jean-Sébastien 
Vialatte, entitled "L’impact et les enjeux des nouvelles technologies d'exploration et de thérapie du cerveau" (The impact and 
challenges of new technologies for brain exploration and therapy), published on the Senate website 
https://www.senat.fr/notice-rapport/2011/r11-476-1-notice.html and also on the National Assembly website 
https://www.assemblee-nationale.fr/13/rap-off/i4469.asp in addition to the Office's Science and Technology Briefing No. 20 
"Neurosciences et responsabilité de l’enfant" (Neurosciences and children's liability by Mr Michel Amiel, Senator (November 
2019), available on the Senate website 
https://www.senat.fr/fileadmin/Fichiers/Images/opecst/quatre_pages/OPECST_2019_0090_note_neursociences.pdf and also on 
the National Assembly website https://www2.assemblee-
nationale.fr/content/download/181379/1817000/version/3/file/OPECST_2019_0090_note_neurosociences.pdf 
30 Particular mention should be given to the transport and automotive industries, which are already developing 
neurotechnology-based solutions for their future products. 
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