Allez au contenu, Allez à la navigation



L'impact et les enjeux des nouvelles technologies d'exploration et de thérapie du cerveau (Rapport)

13 mars 2012 : L'impact et les enjeux des nouvelles technologies d'exploration et de thérapie du cerveau (Rapport) ( rapport de l'opecst )

B- LA VISUALISATION DE L'ACTIVITÉ CÉRÉBRALE

1- L'imagerie par résonance magnétique (IRM)

La possibilité de voir le cerveau en fonctionnement a radicalement contribué à l'évolution de l'approche du cerveau tant sur le plan philosophique, qu'au niveau de la recherche scientifique et des approches thérapeutiques.

Appareil d'imagerie par résonnance magnétique (IRM)

La technologie de l'IRM repose sur l'utilisation des propriétés magnétiques des noyaux atomiques. Soumis à une onde électromagnétique de fréquence adaptée, ceux-ci changent d'orientation et émettent un signal électromagnétique lorsqu'ils retrouvent leur position d'origine. L'examen d'IRM consiste à appliquer des champs magnétiques de puissance et d'incidence variables, et à enregistrer le signal émis. Grâce à des outils mathématiques puissants de traitement du signal, des images en 2 ou 3 dimensions, sont recréées. En faisant varier les paramètres d'acquisition des données, il est possible d'améliorer le contraste des images. L'IRM fournit des coupes virtuelles montrant les détails anatomiques avec une précision millimétrique, ce qui permet de repérer les modifications anatomiques du cerveau. C'est une technologie sans danger pour le patient, contrairement aux techniques qui utilisent les rayons X (rayonnement ionisant), elle autorise la répétition d'examens sur un même patient et confère une bonne résolution spatiale bi et tridimensionnelle avec une précision de l'ordre du millimètre, et la possibilité de générer une grande quantité de contrastes pour une même image.

Cependant, c'est une technique proscrite sur les sujets porteurs de dispositifs métalliques (pacemarkers, implants...), et qui nécessite la coopération du patient, lequel doit rester immobile plus d'un quart d'heure minimum, dans un bruit assourdissant. C'est en outre une technique coûteuse exigeant une installation lourde et une haute technicité.

D'après Didier Dormont53(*), les progrès de l'IRM portent sur la rapidité, la résolution, et la multi-modalité, par le développement de nombreuses applications différentes (la spectroscopie qui donne des informations biochimiques in vivo, l'IRM fonctionnelle, l'IRM de diffusion, l'IRM de perfusion, etc).

En neurosciences, l'IRM est utilisée pour cartographier les différentes zones du cerveau de sujets en bonne santé et de personnes atteintes d'affections neurologiques. En pratique médicale, elle est utilisée pour distinguer les tissus pathologiques des tissus sains, notamment les tumeurs du cerveau.

a) L'imagerie par résonance magnétique fonctionnelle (IRMf)

L'Imagerie par résonance magnétique fonctionnelle (IRMf) exploite le mécanisme concrétisé par le signal BOLD (Blood Oxygen Level Dependant) : elle détecte l'augmentation locale et transitoire du débit sanguin par aimantation de l'hémoglobine contenue dans les globules rouges. Dans les régions du cerveau où l'activité neuronale est stimulée, l'augmentation de débit sanguin s'accompagne d'une augmentation du taux d'oxygène dans le sang. L'oxygène est porté par l'hémoglobine dans les globules rouges, et l'hémoglobine contient un atome de fer susceptible de s'aimanter ou non en fonction de la présence d'oxygène. Cela se traduit par une modification hémodynamique faible, mais détectable par l'IRM, des propriétés d'aimantation des molécules d'eau autour et dans les vaisseaux sanguins.

Images de l'activité du cerveau (IRMf)
pendant une opération mentale ou en réponse à une stimulation

La méthode appelée IRMf Bold consiste ainsi à mesurer l'évolution des propriétés d'aimantation des molécules d'eau autour des vaisseaux sanguins quand le sujet accomplit une tâche, et à les comparer à ces propriétés quand la personne est au repos. On en déduit ainsi les zones du cerveau qui s'activent durant ces tâches.

Par reconstruction mathématique, l'IRMf permet de localiser les régions du cerveau spécialement actives lors d'une pensée, d'une action ou d'une expérience, d'en observer les changements au cours du temps, et de mettre en évidence les différences d'activité entre des individus sains et ceux atteints de pathologies. C'est donc l'une des techniques les plus appropriées pour étudier des processus cognitifs humains sur des groupes de sujets sains ou malades. Elle peut être utilisée conjointement avec les études comportementales, l'EEG et la MEG.

Traitement logiciel de l'ensemble des images avec une estimation statistique

En neurologie et en psychiatrie, l'IRMf est utilisée aujourd'hui pour comprendre les pathologies du cerveau, en espérant à terme pouvoir les diagnostiquer de manière précoce et en effectuer le suivi de manière fiable. Le développement de la technique de l'IRMf en temps réel permet d'effectuer le suivi en temps réel de l'efficacité thérapeutique d'un traitement (médicament ou stratégie comportementale) ; cela pourrait accélérer la mise au point de traitements à visée neurologique et ouvrir l'accès à la thérapie personnalisée.

b) L'Imagerie par résonance magnétique de diffusion

L'IRM de diffusion est une nouvelle méthode d'imagerie reposant sur la diffusion de l'eau dans les tissus cérébraux qui améliore la précision de l'IRM fonctionnelle classique. Elle nous a été décrite par Denis Le Bihan, qui en est l'un des concepteurs54(*). Elle s'appuie sur le degré de diffusion des molécules d'eau dans les tissus à une échelle microscopique, bien inférieure à l'échelle millimétrique usuellement obtenue avec les images IRM. C'est la seule méthode qui permet de visualiser un accident ischémique55(*) dans les premières heures, car dans la région en train de mourir, le mouvement spontané de diffusion des molécules d'eau se ralentit de 30 à 50% dans les toutes premières minutes ; si ce phénomène est détecté grâce à l'imagerie médicale, le médecin peut établir un diagnostic très précoce, dans les six premières heures, et donner au malade un traitement actif qui débouchera l'artère.

c) L'IRM à très haut champ magnétique

Selon Cyril Poupon56(*), l'IRM à très haut champ magnétique permettra de visualiser le manteau cortical, mais grâce à une image acquise à 7 T, l'on sera en mesure de visualiser les couches corticales. L'amélioration de la résolution au niveau du cortex permet, d'une part, de mieux en analyser la structure, d'en observer d'éventuelles atrophies, et de mieux localiser une fonction en jeu à l'aide de l'imagerie fonctionnelle. Il sera alors envisageable de détecter quelle couche du cortex s'est activée, et cette information pourra être mise à profit au niveau de l'étude des réseaux fonctionnels.

Pour Denis Le Bihan57(*), l'imagerie à très haut champ offre de nombreux avantages : le rapport signal à bruit des images augmente de manière quasi proportionnelle avec l'intensité du champ magnétique. Ce gain peut être exploité pour améliorer la résolution spatiale et/ou temporelle des images au-delà de la résolution actuelle des IRM ou pour réaliser un meilleur compromis entre durée d'acquisition et résolution spatiale. Ces imageurs permettent aussi d'explorer de nouveaux types de contraste pour accéder à des structures ou des traits fonctionnels du cerveau jusqu'alors inobservables in vivo. Enfin, les champs intenses permettent d'obtenir beaucoup plus facilement des informations sur d'autres molécules que l'eau, comme les métabolites ou les neurotransmetteurs. Cela justifie pleinement la poursuite du projet franco-allemand Iseult de construction d'un imageur par résonance magnétique IRM.


* 53 Professeur des universités, praticien hospitalier, spécialiste en neuroimagerie, chercheur au centre de recherche de l'ICM (Audition publique du 29 juin 2011)

* 54 Directeur de NeuroSpin, membre de l'académie des Sciences (audition publique du 26 mars 2008 et visite des Rapporteurs à Neurospin, le 18 janvier 2012).

* 55 Anémie locale, arrêt ou insuffisance de la circulation du sang dans un tissu ou un organe.

* 56 Chef du Laboratoire de résonance magnétique nucléaire (NeuroSpin/Laboratoire d'imagerie et de spectroscopie - LRMN) au CEA (audition publique du 29 juin 2011).

* 57 Visite des Rapporteurs à NeuroSpin, le 18 janvier 2011.