Allez au contenu, Allez à la navigation



L'impact et les enjeux des nouvelles technologies d'exploration et de thérapie du cerveau (Rapport)

13 mars 2012 : L'impact et les enjeux des nouvelles technologies d'exploration et de thérapie du cerveau (Rapport) ( rapport de l'opecst )

B- L'ÉVOLUTION DES INTERFACES HOMME/MACHINE

La pensée peut-elle commander le mouvement sans l'intermédiaire du corps, et diriger une machine ? Ce qui était jadis un thème de science-fiction est devenu une réalité avec les interfaces homme/machine grâce à la simulation en trois dimensions (3D) d'un environnement particulier dans lequel le sujet a l'impression d'évoluer et au sein duquel on l'immerge. Ainsi on peut agir sur ses perceptions, son comportement pour le meilleur, le soin, ou pour le pire, le contrôle et la manipulation. Selon Angela Sirigu,64(*) « Les interfaces utilisées en neurosciences, font appel à peu de technologie, mais fonctionnent très bien. Lorsqu'on plonge l'individu dans la réalité virtuelle et la simulation, le sujet porte un casque et se retrouve dans un environnement complexe. Même si cet environnement est irréel, cet environnement peut être réel pour le cerveau ».

1- L'interface cerveau/machine (ICM)

Une interface cerveau/machine (ICM), ou BCI pour l'acronyme anglais, désigne un système de liaison directe entre un cerveau et un ordinateur, permettant à un individu de communiquer avec son environnement sans passer par l'action des nerfs périphériques et des muscles. L'idée est déjà ancienne, puisque le concept a été proposé en 1973, et que les premiers essais cliniques sur l'homme ont été menés en 1980 par l'équipe de Thomas Elbert.

La structure d'une ICM comprend un système d'acquisition et de traitement des signaux cérébraux, un système de classification et traduction de ces signaux dans un ordinateur, un système de commande mécanique d'un élément de l'environnement (un clavier sur écran, un fauteuil roulant, une prothèse, etc.), et une boucle finale d'apprentissage par rétroaction, permettant à l'utilisateur de progresser dans la maîtrise de l'ICM, et à l'ICM d'affiner l'interprétation des activités cérébrales du patient (biofeedback).

Les signaux proviennent de l'activité électrique des neurones. Leur acquisition peut être invasive : une électrode unique ou une grille d'électrodes est alors implantée dans le cortex, avec une excellente résolution spatiale (sensibilité au neurone ou au micro réseau de neurones). Une grille d'électrodes est parfois posée sous ou sur la dure-mère, permettant de produire un électrocorticogramme. Les techniques non invasives consistent à placer les électrodes sur le cuir chevelu, afin de produire un électroencéphalogramme. Mais la résolution spatiale est alors faible et la durée d'enregistrement est limitée.

Les signaux de l'activité cérébrale du patient sont plus ou moins complexes à traiter, selon qu'il s'agit du potentiel d'action d'un seul neurone ou de l'activité de plusieurs millions d'entre eux. La difficulté réside aussi dans le processus d'apprentissage réciproque entre l'individu et le système. On distingue les ICM asynchrones (le patient modifie volontairement son activité cérébrale et la variation neurale correspondante est traitée), et les ICM synchrones (le patient reçoit des stimuli à haute cadence et le système analyse sa réponse neurale).

Au Centre de neurosciences de Lyon, la mission a pu assister à une expérience sur un sujet en bonne santé. La personne équipée d'un casque EEG focalise son attention sur une lettre qu'elle veut épeler. Lorsque cette lettre est flashée, une onde cérébrale particulière est générée ; elle est ensuite récupérée, détectée et interprétée par la machine. Cette application permet ainsi d'écrire du texte par la pensée.

Les outils nécessaires à l'ICM

La médecine est bien sûr une des applications majeures des ICM, et de nombreux patients sont concernés quand certains accidents vasculaires cérébraux dans le tronc cérébral provoquent une paralysie complète, à la seule exception des paupières, alors même que le sujet est parfaitement conscient, avec un syndrome d'enfermement (locked-in syndrom). Les ICM permettent de proposer des solutions aux patients souffrants de scléroses latérales amyotrophiques (maladie de Lou Gehrig ou de Charcot) qui se caractérisent par une paralysie et une amyotrophie progressives, qui les prive de leur capacité à communiquer et à se mouvoir. Les lésions de la moelle épinière privent pareillement certaines victimes de l'usage de leurs membres supérieurs et inférieurs. Un ICM ferait-il marcher un individu ? s'interroge François Berger65(*) : « Pour l'heure, aucune équipe internationale n'est capable d'atteindre cet objectif, sachant qu'une bonne interface cerveau/machine associée à des prothèses robotiques performantes peut améliorer de façon significative le handicap d'un patient ayant peu de degrés de liberté. » 


* 64 Neuropsychologue, directrice de recherche, Institut des sciences cognitives de Lyon (CNRS/Lyon I) - (audition publique du 30 novembre 2011).

* 65 Professeur de médecine, directeur exécutif de CLINATEC-CEA, Institut des neurosciences et CHU de Grenoble, INSERM) - (Audition publique du 30 novembre 2011).