Allez au contenu, Allez à la navigation

Les techniques alternatives à la fracturation hydraulique pour l'exploration et l'exploitation des hydrocarbures non conventionnels (Rapport d'étape)

5 juin 2013 : Les techniques alternatives à la fracturation hydraulique pour l'exploration et l'exploitation des hydrocarbures non conventionnels (Rapport d'étape) ( rapport de l'opecst )

C. UNE TECHNIQUE MAÎTRISABLE

1. Une technique qui évolue très rapidement

Tous les industriels auditionnés par vos rapporteurs se sont faits l'écho des progrès réalisés récemment pour réduire l'impact de la fracturation hydraulique.

a) Additifs

Les industriels tendent à réduire leur nombre, leur quantité et leur toxicité.

Des avancées significatives ont été réalisées depuis trois ans.

COMPOSITION DU FLUIDE DE FRACTURATION

Source : GEP-AFTP

Trois catégories de fluides aqueux sont employés sur le marché :

- L'eau dite « glissante » (slickwater) pour la production de gaz sec (méthane) ;

- Les gels dits linéaires pour la production de gaz humide ou de pétrole léger ;

- Les gels dits réticulés pour la production de pétrole plus lourd.

Les gels sont utilisés pour maintenir le sable en suspension. L'eau représente généralement environ 94 % du fluide, le sable entre 5 et 6 % et les additifs chimiques 0,15 à 0,25 %.

Les nouvelles technologies développées visent à utiliser des produits moins polluants, provenant par exemple de l'industrie alimentaire, comme la gomme de guar.

D'après les auditions réalisées par vos rapporteurs, la fracturation peut se concevoir uniquement avec des produits de type ménager, peu ou pas toxiques.

En effet, les produits indispensables au procédé de fracturation sont tous non toxiques. Il s'agit de sable (naturel ou non), de polyacrylamides (PAM) et/ou de produits tels que la gomme guar, d'usage alimentaire.

Le fluide de fracturation peut être généré directement à partir de poudre, sans ajout d'hydrocarbures. Ainsi, en 2012, Halliburton a évité, grâce à ce système, l'emploi de 113 000 m3 de distilat d'hydrocarbures correspondant à 5 400 transports par camions.

Les autres produits - biocides, surfactant, acides, inhibiteurs de corrosion et de dépôt - ne sont pas indispensables. Ils permettent toutefois de préserver les équipements et d'optimiser la fracturation. Par conséquent leur suppression a un impact économique. Certains de ces produits peuvent être remplacés par des substituts non toxiques. Les biocides peuvent, par exemple, être remplacés par un traitement UV. En 2012, Halliburton a ainsi évité l'emploi de 492 m3 de biocides.

FRACTURATION HYDRAULIQUE : QUELS SONT LES ADDITIFS RÉELLEMENT INDISPENSABLES ?

Source : SNF

Les industriels tendent par ailleurs à rendre publique la composition de leurs fluides de fracturation, à défaut de leur formulation exacte, considérée comme relevant parfois du secret industriel. Le site internet d'information FracFocus est, aux États-Unis, le principal outil de cette transparence.

UN EXEMPLE DE FLUIDE DE FRACTURATION PROPRE : CLEANSTIM D'HALLIBURTON

CleanStim est un fluide de fracturation composé intégralement de produits provenant de l'industrie alimentaire. Il est utilisé à ce jour sur 32 puits. Toutefois, il représente un surcoût par rapport aux techniques traditionnelles, ce qui limite son utilisation.

Source : Halliburton

Ainsi, des solutions existent ; mais elles sont coûteuses et impliquent un effort de l'industrie.

b) Qualité des puits et des installations au sol

La sûreté du forage repose sur l'intégrité et donc la qualité des puits, afin d'éviter des fuites accidentelles de fluides de fracturation et d'hydrocarbures.

Rappelons que l'activité de forage est ancienne en France. Depuis 70 ans, plus de 6 000 puits d'hydrocarbures y ont été forés. Cette expérience a permis à notre pays de se doter de lois et règlements encadrant tant l'octroi des permis, la durée des concessions que les conditions de travail et la protection de l'environnement.

La pose de cuvelages en acier concentriques et la cimentation des espaces interstitiels permettent de créer plusieurs barrières étanches. Des contrôles de la cimentation et de la corrosion des forages permettent d'assurer la protection des nappes phréatiques.

L'INTÉGRITÉ DES PUITS DE FORAGE

Source : GEP-AFTP

Les puits d'hydrocarbures non conventionnels sont régis par les mêmes principes que les autres puits (hydrocarbures conventionnels, eau, géothermie). Les opérations s'effectuent par phases successives. Lors de chacune de ces phases, un tubage est descendu et cimenté ; un contrôle qualité garantissant l'intégrité du tubage et du ciment est obligatoire. Le puits est conçu de manière à l'isoler des formations géologiques environnantes. Les phases en surface visent à protéger les nappes phréatiques.

Par ailleurs, afin d'éviter les fuites en surface, une membrane de protection du sol de la zone de forage doit être installée pour éviter tout déversement d'eau contaminée.

c) Gestion de l'eau
(1) La quantité d'eau

Lors d'un forage d'exploration, 1 000 à 2 000 m3 d'eau sont nécessaires pour évaluer le potentiel de production d'un puits.

La stimulation d'un puits requiert 10 000 à 20 000 m3 d'eau, ce qui représenterait 12 jours d'arrosage d'un golf. À titre de comparaison, l'extraction minière du charbon demande 2 à 4 fois plus d'eau par unité d'énergie.

Aucun apport d'eau n'est nécessaire pendant la période de production (environ 10 ans).

Le prélèvement d'eau doit être encadré localement, afin d'éviter les conflits d'usage. Les dates de ce prélèvement peuvent être réglementées. En outre, l'eau prélevée n'est pas nécessairement potable (utilisation d'eau issue d'un aquifère profond non potable, d'eau de mer, d'eau usée traitée...). La réutilisation de l'eau produite pour réaliser de nouvelles fracturations est aujourd'hui privilégiée aux États-Unis : elle permet de limiter la consommation et le transport d'eau. Dans le Marcellus, par exemple la totalité de l'eau dite de « flowback » (remontée à la surface) est réutilisée pour les activités de forage et de stimulation.

D'après le GEP-AFTP, le volume disponible pour la réutilisation est d'environ 30 % à 50 % du volume initialement utilisé pour la fracturation. Cette proportion est très variable selon les sites. En outre, si 30 % de l'eau ressort, en moyenne, au cours des six premières semaines, 30 % supplémentaire remonteront au cours de la durée de vie du puits. Au final, un tiers de l'eau est perdu définitivement en profondeur, dans une zone sans risque pour l'environnement.

Par ailleurs les progrès techniques réalisés permettent d'optimiser le placement des fracturations et ainsi de minimiser la quantité d'eau nécessaire pour la récupération d'une quantité donnée d'hydrocarbures (voir supra, l'exploration par sismique).

(2) Le traitement de l'eau

Le traitement des eaux de production de l'industrie pétrolière et gazière, y compris s'agissant des hydrocarbures de roche-mère, est une compétence maîtrisée par les industriels spécialistes de ce secteur. Cette compétence est ancienne, liée au fait que pour un baril d'huile produit, l'industrie pétrolière produit 4 barils d'eau qui sont traités et recyclés. L'eau issue des opérations est de qualité variable en fonction des formations. Les technologies de traitement sont connues et similaires à celles utilisées en traitement d'eaux industrielles :

- Prétraitement (séparation par décantation ou flottation) et filtration ;

- Élimination des sels : techniques membranaires ou d'évaporation et concentration.

En fonction de la destination des eaux produites (utilisation pour d'autres opérations de stimulation, rejet vers le milieu naturel), des solutions de traitement différentes peuvent être mises en place.

La mobilisation éventuelle de métaux lourds au sein de la roche doit faire l'objet d'une attention particulière. Une bonne connaissance de la roche ciblée est indispensable. Des travaux de recherche existent en vue de limiter les échanges entre la roche et le fluide de fracturation (Total).

(3) La protection des nappes phréatiques

Pour ce qui est de la protection des nappes phréatiques, il convient de rappeler que la fracturation hydraulique est réalisée généralement à plusieurs milliers de mètres sous les nappes phréatiques. Il n'a jamais été avéré que la fracturation hydraulique ait été directement cause d'une pollution de ces nappes (car les fissures n'excèdent pas quelques dizaines de mètres et se forment horizontalement). En revanche une mauvaise cimentation du puits ou un déversement en surface peuvent causer des dommages.

La pratique consistant à réinjecter des eaux usées à faible profondeur, qui a été à l'origine de dégâts environnementaux, attribués ensuite à tort à la fracturation hydraulique, est à proscrire.

Aux États-Unis, il est de plus en plus admis que la récupération de l'eau issue des opérations de fracturation hydraulique est économiquement plus rentable que sa réinjection.

Préalablement aux opérations, une bonne connaissance des réseaux hydrogéologiques du sous-sol est indispensable.

Pendant les opérations, les techniques de micro-sismique permettent de mesurer l'extension des fractures en temps réel. Un suivi continu des nappes phréatiques peut être réalisé. L'établissement d'un « état zéro » des aquifères et un suivi pendant toutes les phases permet de s'assurer qu'il n'y a pas de contamination.

d) Contrôle de la sismicité

Les opérations de forage et de fracturation hydraulique induisent des événements micro-sismiques dont la magnitude est faible, généralement de 1 à 2 sur l'échelle de Richter. Exceptionnellement, si des failles non préalablement décelées sont activées, l'événement peut atteindre une magnitude de 3 qui équivaut aux vibrations d'un camion. Aucun accident majeur n'a été recensé en plus de cinquante ans.

Les incidents relevés dans la région de Blackpool le 1er avril 2011 (magnitude 2,3) puis le 27 mai 2011 (magnitude 1,5) n'ont causé aucun dégât. Ils ont été attribués à la sollicitation d'une mini-faille géologique proche qui n'avait pas été détectée. À ce niveau un séisme est considéré comme très mineur, généralement non ressenti. Par comparaison, l'incident relevé dans la région de Bâle en 2006, à la suite d'une opération de fracturation hydraulique réalisée dans un forage de géothermie, était un événement de magnitude 3,4 sur l'échelle de Richter (ce qui correspond encore à un niveau jugé mineur c'est-à-dire souvent ressenti mais causant peu de dommages)11(*).

D'autres activités humaines (mines, construction de barrages) ont entraîné, par le passé, des événements sismiques.

Néanmoins il est indispensable de tirer des leçons des incidents relevés dans la région de Blackpool. Ceux-ci démontrent qu'avant de procéder à la fracturation hydraulique il est nécessaire :

- d'une part, comme déjà mentionné plus haut, d'avoir une très bonne connaissance de la roche ciblée : cette connaissance permettra aussi d'évaluer si des métaux lourds, et notamment des éléments radioactifs, sont susceptibles d'être mobilisés vers la surface ;

- d'autre part, comme évoqué aussi plus haut mais pour d'autres raisons, de mettre en place un dispositif de suivi et de contrôle en temps réel du processus de fracturation hydraulique, grâce à l'usage de technologies de micro-sismique : ce suivi présente, plus généralement, l'avantage de permettre une optimisation du processus productif (voir ci-après).

e) Maîtrise de l'empreinte au sol

Par rapport à l'exploitation d'hydrocarbures conventionnels, l'empreinte au sol est accrue pour deux raisons :

- D'une part, malgré l'utilisation de méthodes de stimulation, un puits dans la roche-mère est par nature moins productif qu'un puits conventionnel. Il faut donc forer davantage de puits afin d'accroître la surface en contact avec le réservoir, pour rentabiliser l'exploitation ;

- D'autre part, l'emploi de la fracturation hydraulique nécessite le transport et le stockage voire le retraitement sur place de l'ensemble des composants nécessaires aux opérations, notamment l'eau.

Néanmoins, les nuisances sont concentrées pendant les phases de forage et de fracturation, c'est-à-dire au début de la vie du puits, la phase d'exploitation étant par nature beaucoup plus discrète.

Les opérations de fracturation sont, en principe, réalisées une fois pour toutes en début de vie du puits. Elles durent quelques semaines.

Pour réduire l'empreinte au sol, deux solutions sont mises en oeuvre :

- Regrouper les puits en grappes (« clusters »), comme précédemment mentionné. Un cluster peut regrouper 15 à 30 puits sur une superficie de 2 à 3 ha. La distance entre deux clusters est de 5 à 10 km.

- Remplacer les camionnages par un réseau de canalisations, ce qui est de plus en plus pratiqué aux États-Unis.

En phase de forage, le mât de l'appareil de forage s'élève à 30-35 mètres (à comparer avec des éoliennes : 50 à 80 m). Toutefois ce mât (derrick) est temporaire. Une superficie de 100 m x 100 m (1,5 terrain de football) est considérée comme suffisante pour accueillir l'appareil de forage (rig) et les équipements de fracturation. Cette empreinte peut être réduite (rig compact, citernes verticales).

Chaque puits nécessite 15 à 20 jours de forage puis environ une semaine pour les opérations de fracturation (5 à 10 phases de fracturations durant chacune quelques heures).

Pour un cluster de 10 puits, la durée des nuisances peut donc être estimée à environ un an.

Par la suite, en phase d'exploitation, l'empreinte au sol est très réduite. Seule la tête de puits (d'une hauteur d'environ 1,20 m) demeure visible en surface. Pour un cluster de 10 puits, il restera donc 10 têtes de puits débitant des hydrocarbures.

PUITS EN CLUSTER (EN PHASE D'EXPLOITATION)

Source : Total

f) Optimisation du processus productif

L'optimisation du processus de fracturation hydraulique contribue à réduire les inconvénients subis. La production est en effet accrue, tout en utilisant moins d'eau, de sable et d'additifs.

Il s'agit d'améliorer :

- le placement des fissures, afin de privilégier les emplacements les plus productifs ;

- leur densité, pour augmenter le nombre de drains présents dans la roche, plutôt que d'accroître leur étendue ;

- les modalités de la fracturation, dans le but de rendre l'ensemble du processus plus efficient.

Schlumberger met, par exemple, en oeuvre un procédé appelé HiWay, qui requiert 40 % moins de sable et jusqu'à 60 % moins d'eau qu'une fracturation classique. Ce procédé consiste à agréger les particules solides servant au soutènement des fissures, afin d'ouvrir des canaux par lesquels s'écoulent le pétrole et le gaz.

HIWAY : EXEMPLE D'UNE NOUVELLE TECHNOLOGIE DE FRACTURATION HYDRAULIQUE

Source : Schlumberger


* 11 On rappellera ici qu'un accroissement de magnitude de 1 sur l'échelle de Richter, qui est logarithmique, correspond à une multiplication par 30 de l'énergie et par 10 de l'amplitude du mouvement.